Why do we need HetNets?

Preliminaries
A Continuous LP
Converse
Utility Scheduling - Preliminaries
α-fair Utility Scheduling

Capacity and Scheduling in Heterogeneous Networks

Phil Whiting

Macquarie University
North Ryde, NSW 2109

Joint Work with Sem Borst and Stephen Hanly

Monday, June 16th 2014
Talk Summary

- Mobile Radio and the Spectrum Crunch
- Getting more Capacity and How much do we Have?
- Utility Schedulers
- Closing Remarks
Why do we need HetNets?

Preliminaries

A Continuous LP

Converse

Utility Scheduling - Preliminaries

α-fair Utility Scheduling

Mobiles Past

An Entrepreneur Securing a Deal using an Early Mobile Phone
Mobiles Present

Progress toward Data, Apps - Location Based Information
Why do we need HetNets?

Preliminaries
A Continuous LP
Converse
Utility Scheduling - Preliminaries
α-fair Utility Scheduling

Mobiles Future

Future User having Trouble with a Hotel Booking
Why do we need HetNets?

Preliminaries
A Continuous LP
Converse
Utility Scheduling - Preliminaries
α-fair Utility Scheduling

Talk Summary

- A SnapShot Resource Allocation Problem
- A Continuous LP
- Capacity and Scheduling
- α-fair Utility Scheduling
- Stability Results
- Conclusions
Gaining Capacity using HetNets

- Small cells (pico/femto) to increase frequency reuse
 - Place in areas of poor coverage
 - Areas of traffic concentration - ”Hot Spots”
- Adapt Network to Match Traffic Load
A Simplified HetNet Model

$L = 4$ picos - all users in range of macro and at most one pico
No Interference between Pico Cells
Flexible Allocation

- **Time Share Spectrum**
 - Macro Cell/Pico Cells
 - Use Almost Blanking SubFrames (fine granularity)
- **Cell Range Expansion for Picos**
 - Expand to cover more mobiles
 - Contract and send at Higher Rate

For following, see [1]

Why do we need HetNets?

Preliminaries
A Continuous LP
Converse
Utility Scheduling - Preliminaries
α-fair Utility Scheduling

ABS Frames and Time Sharing

1 time unit = macro time allocation + pico time allocation
Mobiles can TimeShare Macro/Pico (Split)
Empty the Network!!

\[D_{1,n} = x_{3,n} + y_{3,n} \text{ bits} \]

\[y_{3,n} \text{ bits} \]

\[S_{3,n} \]

\[x_{3,n} \text{ bits} \]

\[R_{3,n} \]

\[0 \]
The problem to be solved is the following linear program:

\[
\begin{align*}
\text{min} & \quad f + \sum_{l=0}^{L} \sum_{n=1}^{N_l} \frac{y_{l,n}}{S_{l,n}} \\
\text{sub} & \quad \sum_{n=1}^{N_l} \frac{x_{l,n}}{R_{l,n}} \leq f \quad \forall l \\
& \quad x_{l,n} + y_{l,n} \geq D_{l,n} \quad \forall l, \forall n = 1, 2, \ldots N_l \\
& \quad f \geq 0, x_{l,n} \geq 0, y_{l,n} \geq 0 \quad \forall l, \forall n = 1, 2, \ldots N_l
\end{align*}
\]

where \(f \) is the time allocated to the picocells.
Solution Structure

- $\rho_{l,n} := \frac{R_{l,n}}{S_{l,n}}$
- Order User - Decreasing in ρ
- Large $\rho \rightarrow$ pico, Small $\rho \rightarrow$ macro, $= \rho \rightarrow$ Split

\[m_j = 4 \quad \text{Pico cell } j \]
\[N_j = 6 \]
Let’s make the Problem Continuous …
Why do we need HetNets?

Preliminaries

A Continuous LP

Converse

Utility Scheduling - Preliminaries

α-fair Utility Scheduling

Continuous LP parameters

\[\lambda_S \eta (d \xi) = \lambda (d \xi), \eta (d \xi) \text{ probability density} \]

\[R_\ell(\xi), S_\ell(\xi) \text{ Phy. Rates Pico/Macro - Pico } \ell \]

\[x_\ell(\xi), y_\ell(\xi) \text{ bit assignments at location } \xi \]

\[D \text{ download file size (could be random, here fixed)} \]

Largest λ_S for which network is stable?
Continuous LP

\[
\begin{align*}
\min & \quad \tau = f + \sum_{\ell=1}^{L} \int \frac{y_{\ell}(\xi)}{S_{\ell}(\xi)} \lambda(d\xi) \\
\text{sub} & \quad \int \frac{x_{\ell}(\xi)}{R_{\ell}(\xi)} \lambda(d\xi) \leq f \quad \forall \ell
\end{align*}
\]

where,

\[y_{\ell}(\xi) = D - x_{\ell}(\xi)\]

is the file constraint
Optimal solution
For some $\rho_1, \cdots, \rho_L > 0$,
\[
x_\ell^*(\xi) = \begin{cases}
D & \frac{R_\ell(\xi)}{S_\ell(\xi)} \geq \rho_\ell \\
0 & \frac{R_\ell(\xi)}{S_\ell(\xi)} < \rho_\ell
\end{cases}
\]
\[(3)\]

\[
f^* = \max_\ell \int \frac{x_\ell^*(\xi)}{R_\ell(\xi)} d\xi
\]

If $\tau^* < 1$, \exists a stable schedule \cdots
Why do we need HetNets?

Preliminaries

A Continuous LP

Converse

Utility Scheduling - Preliminaries

α-fair Utility Scheduling

Bundling $[nT, (n + 1)T)$, $n \in \mathbb{N}_0$
Bundling Algorithm

1. $B := 1$, Wait until $n_B = 1$
2. Serve bundle B, starting $n_B T$
3. Let $f_B T$ completion slot for bundle B
4. $B := B + 1, n_B := \max\{f_B, B\}$
5. Go to 2
Bundling defines a $D/G/1$ queue, bundle delay $= W_n$

$\tau < 1$, assumptions $\rightarrow \mathbb{E}[W_n]$ Uniformly Bounded

W_n satisfies Spitzer's identity,

$$
\mathbb{E}[W_n] = \mathbb{E}\left[\max_{k \leq n} S_k^+\right] = \sum_{k=1}^{n} \frac{1}{k} \mathbb{E}\left[S_k^+\right]
$$

$S_k = X_k - kT$, X_k duration first k bundles
SLLN and Stability

Any bounded, measurable \(v : S \to \mathbb{R}_+ \),

\[
\frac{1}{T} \sum_{n=1}^{N_T} v(\xi_n(\omega)) \to \int_S v(\xi) \lambda(d\xi)
\]

(4)
a.s. and in \(L_1 \).

\(v^T_\ell(\omega) \equiv \frac{1}{T} \sum_{n=1}^{N_T} \frac{x_\ell(\xi_n(\omega))}{R_\ell(\xi_n(\omega))} \)

is UI, \(\ell = 1, \cdots , L \).

\[\to f_T(\omega) = \max_\ell v^T_\ell(\omega) \]

is UI so that \(\mathbb{E}[f_T] \to f^* \)

\[
\mathbb{E}[f_T] + \sum_{\ell=0}^L \mathbb{E} \left[\frac{1}{T} \sum_{n=1}^{N_T} \frac{y_\ell(\xi_n)}{S_\ell(\xi_n)} \right] \to \tau^* < 1
\]
A schedule π is **clearing** if departure time $D_\pi^\omega(n) < \infty$, $a.s., \forall n$

Prop (Hanly, W.)

Let τ^ be optimal solution to the LP. If $\tau^* < 1$, \exists a clearing schedule π with ergodic properties. Also define $S_n^\pi(\omega) :=$ sojourn time nth mobile, then π satisfies,*

$$\mathbb{E}[S_n^\pi(\omega)] < \bar{S} < \infty$$ (5)
Converse Holds as Well!

Continuous LP $\tau^* > 1 \rightarrow$ No Stable Schedule
Let π be any clearing schedule. Define $V^\pi_T(\omega)$ to be network time needed to clear mobiles arriving in $[0, T]$

Prop (Hanly, W.)

Let τ^ be the solution to the continuous LP. Suppose that $\tau^* > 1$ then there is a fixed constant $\eta > 0$, such that for all π*

$$
\liminf_{T \to \infty} \frac{V^\pi_T(\omega)}{T} = 1 + \eta
$$

almost surely.
Proof Sketch I

Arrivals in \([0, T]\) supposed to arrive at time 0. Apply discrete LP with outcome \(V_T^{(LP)}(\omega)\)

Prop

\(\forall \omega \text{ and for all clearing schedule } \pi,\)

\[
\liminf_T \frac{V_T^{(LP)}(\omega)}{T} \leq \liminf_T \frac{V_T^\pi(\omega)}{T} \tag{6}
\]
Proof Sketch II: Discretise Arrivals using Rate Ratios ρ_ℓ

Given $\varepsilon > 0$, choose intervals,

$\mathcal{N}_{\ell}^{(\ell,n)}$ arrivals in interval n for pico ℓ mean $m_\ell(n)$

For all $0 < \delta < 1/2$ there exists $l_{n,\ell} > 0$

$$\mathbb{P}\left\{ \frac{1}{T} \mathcal{N}_{\ell}^{(\ell,n)} \notin [(1 - \delta)m_\ell(n), (1 + \delta)m_\ell(n)] \right\} \leq e^{-Tl_{n,\ell}} \quad (7)$$

Borel-Cantelli implies $\exists T_E$ all arrivals close to expectation, $\forall T > T_E$
Finite set A of rate ratio policies,

$$\liminf_{T} \frac{V_{T}^{(LP)}}{T} \geq \liminf_{T} \inf_{a \in A} \frac{V_{a}^{a}}{T} - \frac{L \varepsilon D}{R}$$

(8)

$$= \inf_{a \in A} \liminf_{T} \frac{V_{a}^{a}}{T} - \frac{L \varepsilon D}{R}$$

(9)

$$\geq (1 + \eta) - \frac{L \varepsilon D}{R}$$

(10)
Utility Scheduling and Stability
Modelling Assumptions

- Discrete set - location k in cell ℓ - (k, ℓ), $k = 1, \cdots, K_\ell$
Modelling Assumptions

- Discrete set - location k in cell ℓ - $(k, \ell), \ k = 1, \cdots, K_\ell$
- Unit exponential files
Modelling Assumptions

- Discrete set - location k in cell $\ell - (k, \ell), \ k = 1, \cdots, K_l$
- Unit exponential files
- Independent Poisson streams, $\lambda^{(\ell)}_k > 0$
Modelling Assumptions

- Discrete set - location k in cell $\ell - (k, \ell), \ k = 1, \ldots, K_l$
- Unit exponential files
- Independent Poisson streams, $\lambda^{(\ell)}_k > 0$
- Physical Rates $R^{(\ell)}_k$ pico, $S^{(\ell)}_k$ macro
Why do we need HetNets?

Preliminaries

A Continuous LP

Converse

Utility Scheduling - Preliminaries

\(\alpha \)-fair Utility Scheduling

Time Sharing

Time Sharing Vector \((a, b)\)
Time Sharing

Time Sharing Vector \((a, b)\)

Feasibility constraints,

\[
\sum_{k=1}^{K^{(\ell)}} a_k^{(\ell)} + \sum_{m=0}^{L} \sum_{k=1}^{K^{(m)}} b_k^{(m)} \leq 1, \quad \forall \ell. \tag{11}
\]

with throughput,

\[
T_k^{(\ell)} = a_k^{(\ell)} R_k^{(\ell)} + b_k^{(\ell)} S_k^{(\ell)} \tag{12}
\]
Why do we need HetNets?

Preliminaries
A Continuous LP
Converse
Utility Scheduling - Preliminaries
α-fair Utility Scheduling

Processor Sharing Model for a HetNet

1
2
3

M

Whiting
Heterogeneous Networks
Stability Region Λ_0

\[\mathcal{T} \doteq \{(a, b) : (a, b) \text{ feasible}\}, \]

\[\Lambda \doteq \bigcup \{ \mathcal{T} (a, b) : (a, b) \in \mathcal{T}\} \]

Then,

\[\Lambda_0 \doteq \{ \lambda : \exists \varepsilon > 0, \lambda + \varepsilon \in \Lambda\} \]

Stable scheduler exists iff $\lambda \in \Lambda_0$
Why do we need HetNets?

Preliminaries

A Continuous LP

Converse

Utility Scheduling - Preliminaries

α-fair Utility Scheduling

Continuous Time Markov Processes

\[\mathbf{N}(t) = \left(\mathbf{N}^{(0)}(t), \ldots, \mathbf{N}^{(L)}(t) \right) \in \prod_{\ell} \mathbb{N}^{K_{\ell}}_0 =: \mathcal{N} \]

Arrivals, rate \(\lambda^{(\ell)}_k \),

\[\left(\mathbf{N}^{(0)}, \ldots, \mathbf{N}^{(L)} \right) \rightarrow \left(\mathbf{N}^{(0)}, \ldots, \mathbf{N}^{(L)} \right) + \left(0, \ldots, e_k^{(\ell)}, \ldots, 0 \right) \]

Departures policy \(\theta \), in state \(\mathbf{n} \in \mathcal{N} \), rate \(T (a^\theta(n), b^\theta(n)) \)

\[\left(\mathbf{N}^{(0)}, \ldots, \mathbf{N}^{(L)} \right) \rightarrow \left(\mathbf{N}^{(0)}, \ldots, \mathbf{N}^{(L)} \right) - \left(0, \ldots, e_k^{(\ell)}, \ldots, 0 \right) \]
A Static Utility Optimization Problem

\[U(a, b) = \sum_{\ell=0}^{L} \sum_{k} N_{k}^{(\ell)} U_{\alpha} \left(\frac{T_{k}^{(\ell)}(a, b)}{N_{k}^{(\ell)}} \right) \]

(13)

\(\alpha \)-fair utilities

\[U_{\alpha}(\cdot) = (1 - \alpha)^{-1}x^{1-\alpha}, \ \alpha \in (0, \infty) \]

For solution to above,, see [2]

Prop (Hanly, W.)

Suppose $\lambda \in \Lambda_0$. Then $\forall \alpha > 0$ the Markov Process defined by α-fair scheduling is positive recurrent so that

$$\mathbb{P}\{N(t) = N\} \to \pi^\alpha(N) \text{ as } t \to \infty$$

(14)

Moreover limiting α moments exist; that is, for all (k, ℓ),

$$\mathbb{E}_{\pi^\alpha} \left[\left(N_k^{(\ell)}\right)^\alpha \right] < \infty$$

(15)
Proof Sketch

As demonstrated in [3]

\[
L(N) = \sum_{\ell=0}^{L} \sum_{k=1}^{K(\ell)} \left\{ \lambda_k^{(\ell)} \right\} - \alpha \left\{ N_k^{(\ell)} \right\}^{1+\alpha} \left(1 + \alpha\right)
\]

is a Lyapunov function

Let \(N(n) \) jump chain sequence of the uniformized Markov process, then,

\[
L(N(n))
\]

has supermart. property outside a compact set.

Example: Proportional Fair Scheduler

\[U_N \triangleq \sum_{\ell=0}^{L} \sum_{k=1}^{K^{(\ell)}} N_k^{(\ell)} \log \frac{T_k^{(\ell)}}{N_k^{(\ell)}} \]

(17)

Quadratic Lyapunov function \(L \),

\[L(N) \triangleq \frac{1}{2} \sum_{\ell=0}^{L} \sum_{k=1}^{K^{(\ell)}} \frac{\left\{ N_k^{(\ell)} \right\}^2}{\lambda_k^{(\ell)}} \]

(18)
Numerical Results

![Graph showing sample mean N_k/T over iterations (T) for different network types: Macro, Pico 1,1, Pico 2,1, Pico 1,2, and Pico 2,2. The x-axis represents iterations (T) and the y-axis represents the sample mean N_k/T.](image)
Conclusions

- Traffic Capacity Determined by LP
- Fixed Schedule Stable
 - Estimate η
 - Estimate $R_\ell(\xi), S_\ell(\xi)$
 - Infer Capacity
- Results extend to more general networks
Conclusions

- Traffic Capacity Determined by LP
- Fixed Schedule Stable
 - Estimate η
 - Estimate $R_\ell(\xi), S_\ell(\xi)$
 - Infer Capacity
- Results extend to more general networks
- α-fair Utility Scheduler maximally stable
- Equilibrium Moments shown to exist depending on α
- Results extend to periodic schedulers
Thanks!